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Abstract
A system of nonlinear equations is presented for the solution of the Cox–
Thompson inverse scattering problem (1970 J. Math. Phys. 11 805) at fixed
energy. From a given finite set of phase shifts for physical angular momenta,
the nonlinear equations determine related sets of asymptotic normalization
constants and nonphysical (shifted) angular momenta from which all quantities
of interest, including the inversion potential itself, can be calculated. As a
first application of the method we use input data consisting of a finite set of
phase shifts calculated from Woods–Saxon and box potentials representing
interactions with diffuse or sharp surfaces, respectively. The results for
the inversion potentials, their first moments and asymptotic properties are
compared with those provided by the Newton–Sabatier quantum inversion
procedure. It is found that in order to achieve inversion potentials of similar
quality, the Cox–Thompson method requires a smaller set of phase shifts than
the Newton–Sabatier procedure.

PACS numbers: 03.65.Nk, 05.45, 24.10.−i, 25.70.−z

1. Introduction

Although the inverse scattering problem of the Schrödinger operator with central potential
has already been solved at fixed energy (see, e.g., [1]), the theory cannot be applied in
practice because it requires data which are not accessible by experiments. Some practical
theories have therefore been formulated which solve the integral equation of Gel’fand–
Levitan–Regge-type with input kernels defined in terms of spectroscopical quantities (i.e.
experimentally accessible information such as a set of phase shifts). A successful quantum
inversion technique at fixed energy is that introduced by Newton [2] and Sabatier [3] (NS)
and modified by Münchow, Scheid and co-workers [4]. This modified NS (mNS) method
has been extended into various directions in order to treat, e.g., complex potentials [5, 6] or
coupled-channel problems [7].
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Another interesting method is suggested by Cox and Thompson (CT) [8, 9] who derived
nonlinear equations for solving the inverse scattering problem with a finite dataset at fixed
energy. Despite the fact that the theoretical formulation of the CT method dates back to as
early as 1970, the difficult problem of constructing equations to be solved by using a finite set
of phase shifts is apparently still lacking. The purpose of this work is to fill this gap. Starting
from the Povzner–Levitan (PL) representation of the scattering wavefunction and using the
asymptotical property of the functions appearing, we set up a system of nonlinear equations
for determining the finite set of nonphysical (shifted) angular momenta {Li}, i = 1, 2, . . . , N,

from which all quantities of interest can be calculated (including the inversion potential itself ).
As a first application of the CT method we take finite sets of phase shifts derived from

local short range (box and Woods–Saxon) potentials tailored so as to represent situations of
interactions with both rigid and diffuse surfaces. By solving the nonlinear equations (using
standard root-finding packages [10]) we re-derive the potentials and compare them with the
original ones. To draw conclusions also in connection with an alternative inversion method at
fixed energy we always calculate potentials by using the NS method. In general, it is found
that many more phase shifts are required by the NS procedure, especially at low energies, in
order to achieve the same quality in the inversion potentials.

Let us note that this finding reflects the basic differences between the NS and CT methods.
The former has been constructed by involving an infinite set of scattering phase shifts. Any
truncation of this set which in practice always occurs leads to an inversion potential with
vanishing first moment [11] that results in nonphysical oscillation in the asymptotic region.
This is contrasted with the CT inversion potential which has in general a finite first moment
[8].

A brief review of the CT method is given in section 2. In section 3 we derive nonlinear
equations for determining the nonphysical (shifted) angular momenta from a finite set of phase
shifts {δi}, i = 1, . . . , N, with the corresponding physical angular momenta {li}. Section 4
contains illustrative results. The summary and conclusions comprise section 5.

2. Brief review of the Cox–Thompson method

Cox and Thompson (CT) define two disjoint finite sets S and T, each consisting of N distinct
real numbers chosen from the interval

(− 1
2 ,∞)

. Then they define the input symmetrical
kernel as follows:

g(r, r ′) =
∑
l∈S

γlul(r<)vl(r>) (1)

where γl are real coefficients, and ul(r) and vl(r) are, respectively, the regular Ricatti–Bessel
functions (πr/2)1/2Jl+ 1

2
(r) and the irregular Weber–Schläfli functions (πr/2)1/2Yl+ 1

2
(r) [12].

As usual r< (r>) stands for the lesser (greater) of the distance variables r, r ′. The indices l are
associated with the physical angular momentum quantum numbers which take integer values
(l = 0, 1, 2, . . .) for non-identical particle collisions and even values (l = 0, 2, 4, . . .) for
identical particle scattering if the particles are bosons.

The function g(r, r ′) satisfies the partial differential equation

D0(r)g(r, r ′) = D0(r
′)g(r, r ′) (2)

with the reference Schrödinger operator

D0(r) = r2

(
∂2

∂r2
+ 1

)
(3)
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and boundary conditions

g(0, r ′) = g(r, 0) = 0. (4)

Here and in the following, we use atomic units h̄2/2µ = 0.5 and first set the wave number
k = 1.

Now, CT define the transformation kernel L(r, r ′) as the unique solution of the linear
integral equation of Gel’fand–Levitan–Regge-type,

L(r, r ′) = g(r, r ′) −
∫ r

0
dr ′′ r ′′−2L(r, r ′′)g(r ′′, r ′) r � r ′ (5)

with the boundary condition

lim
r ′→0

|L(r, r ′)|r ′−1/2 = O(1). (6)

From the above equations it follows by differentiating and integrating twice by parts, that the
transformation kernel satisfies the partial differential equation

D(r)L(r, r ′) = D0(r
′)L(r, r ′) (7)

with the Schrödinger operators

D(r) = D0(r) − r2V (r) (8)

where the (dimensionless) potential is defined by the relation

V (r) = −2

r

d

dr

(
L(r, r)

r

)
. (9)

Next, CT introduce a PL representation for the regular scattering function with the
definition

φl(r) = ul(r) −
∫ r

0
dr ′ r ′−2L(r, r ′)ul(r

′) l ∈ S. (10)

Using (7) one readily shows that φl satisfies the Schrödinger equation

D(r)φl(r) = l(l + 1)φl(r) l ∈ S (11)

with the boundary condition φl(0) = 0.
To solve the integral equation (5), CT make the ansatz

L(r, r ′) =
∑
L∈T

AL(r)uL(r ′) (12)

where not only the functions AL(r) but also the real numbers L ∈ T have to be determined.
A stringent condition here is that the sets S and T, both consisting of N elements, should be
disjoint.

Insertion of the ansatz (12) into equation (5) and using the linear independence of the
functions um(r),m ∈ S ∪T , one arrives at two separate, though coupled, sets of equations for
the expansion coefficients γl and the expansion functions AL(r). The first set of equations is∑

l∈S

γl

l(l + 1) − L(L + 1)
= 1 L ∈ T (13)

from which the expansion coefficients γl can be obtained [9] as

γl =
∏

L∈T [l(l + 1) − L(L + 1)]∏
l′∈S,l′ �=l[l(l + 1) − l′(l′ + 1)]

l ∈ S. (14)
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The second set of equations reads∑
L∈T

AL(r)
W [uL(r), vl(r)]

l(l + 1) − L(L + 1)
= vl(r) l ∈ S (15)

where the Wronskian is defined by W [a(x), b(x)] ≡ a(x)b′(x)−a′(x)b(x), and the unknown
functions AL(r) appear linearly, but the numbers L ∈ T occur in a highly nonlinear manner.
As expected, it will turn out that the numbers L ∈ T play the role of some sort of nonphysical
(shifted or generalized) angular momenta.

Apparently the above CT equations (15) have not yet been solved for any particular
problem. One reason may be because of the nonlinear character of the equations. In the next
section these equations will be solved using a set of phase shifts {δl}, l ∈ S, as input data.

3. Nonlinear equations

In order to carry out an explicit calculation of the CT method, we use the asymptotic properties
of the functions

ul(r → ∞) = sin(r − lπ/2) (16)

vl(r → ∞) = −cos(r − lπ/2) (17)

φl(r → ∞) = Bl sin(r − lπ/2 + δl) (18)

where the numbers {Bl}, l ∈ S, mean the unknown normalizing constant and the set {δl}, l ∈ S,
denotes the input phase shifts. Of course, the set of equations (15) alone is not sufficient to
determine the functions AL(r) because the numbers L also appear explicitly in the denominator.
Therefore, we use another set of equations, namely the Povzner–Levitan representation (10)
for the regular wavefunction. This also allows the input phase shifts to enter the inversion
procedure. Then we determine both the functions AL(r) and the set of numbers L ∈ T .

Using formulae (16), (18), and the ansatz (12), the PL representation (10) can be written
formally for r → ∞ as

Bl sin(r − lπ/2 + δl) = sin(r − lπ/2) −
∑
L∈T

AL(r → ∞)

∫ ∞

0
dr ′ r ′−2uL(r ′)ul(r

′)

l ∈ S. (19)

The last integral can easily be evaluated and we get

Bl sin(r − lπ/2 + δl) = sin(r − lπ/2) +
∑
L∈T

AL(r → ∞)
sin[(l − L)π/2]

L(L + 1) − l(l + 1)
l ∈ S.

(20)

Now, equation (15) will be applied to determine the asymptotic form of AL. To this end
we use formulae (16), (17) and write equation (15) at the asymptotic limit r → ∞ to be∑

L∈T

AL(r → ∞)
cos[(l − L)π/2]

l(l + 1) − L(L + 1)
= −cos(r − lπ/2) l ∈ S. (21)

By inversion, the asymptotic form of Al can be obtained as

AL(r → ∞) =
∑
l′∈S

KLl′ cos(r − l′π/2) L ∈ T (22)



Solution of the Cox–Thompson inverse scattering problem using finite set of phase shifts 4819

with the inverse matrix K ≡ M−1 calculated from the matrix M defined by the elements

MlL = − cos[(l − L)π/2]

l(l + 1) − L(L + 1)
l ∈ S L ∈ T . (23)

Inserting equation (22) into equation (20), one obtains one set of N equations for two sets of
2N unknowns, namely {L} ∈ T and {Bl}, l ∈ S. This set of N equations can be written in the
form (l ∈ S)[

Bl

2i
ei(δl−lπ/2) − 1

2i
e−ilπ/2 − 1

2

∑
L∈T

sin[π(l − L)/2]

L(L + 1) − l(l + 1)

∑
l′∈S

KLl′ e−il′π/2

]
eir

+

[
− Bl

2i
e−i(δl−lπ/2) +

1

2i
eilπ/2

− 1

2

∑
L∈T

sin[π(l − L)/2]

L(L + 1) − l(l + 1)

∑
l′∈S

KLl′ eil′π/2

]
e−ir = 0. (24)

Because of the linear independence of the functions eir and e−ir , the coefficients in parentheses
must vanish so that one arrives at the following two separate sets of N equations (l ∈ S):

Bl

2i
e−ilπ/2 eiδl = 1

2i
e−ilπ/2 +

1

2

∑
L∈T

sin[π(l − L)/2]

L(L + 1) − l(l + 1)

∑
l′∈S

KLl′ e−il′π/2 (25)

and

− Bl

2i
eilπ/2 e−iδl = − 1

2i
eilπ/2 +

1

2

∑
L∈T

sin[π(l − L)/2]

L(L + 1) − l(l + 1)

∑
l′∈S

KLl′ eil′π/2. (26)

As we see these equations represent an equation and its conjugate in the case of real potentials
because the phase shifts δl are then real and the norms Bl can also be taken to be real numbers.
In this case the above two equations can be written as a single one as follows (l ∈ S):

Bl ei(δl−lπ/2) = e−ilπ/2 +
∑

L∈T ,l′∈S

sin[π(l − L)/2]

L(L + 1) − l(l + 1)
KLl′ ei(1−l′)π/2 (27)

whose real part gives (l ∈ S)

Bl cos(δl − lπ/2) = cos(lπ/2) +
∑

L∈T ,l′∈S

KLl′
sin(l′π/2) sin[π(l − L)/2]

L(L + 1) − l(l + 1)
(28)

and the imaginary part takes the form (l ∈ S)

Bl sin(δl − lπ/2) = −sin(lπ/2) +
∑

L∈T ,l′∈S

KLl′
cos(l′π/2) sin[π(l − L)/2]

L(L + 1) − l(l + 1)
. (29)

Thus the CT theory could be formulated in terms of two sets of nonlinear equations
whose solution gives the normalization constants Bl, l ∈ S and the generalized (nonphysical
or shifted) angular momentum quantum numbers L ∈ T which, in turn, determine the inversion
potential (9).

If one is not interested in the normalization constants (Bl, l ∈ S) then one may divide
the two equations (28) and (29) by each other to arrive at a system of N nonlinear equations
(l ∈ S)

cot(δl − lπ/2) =
cos(lπ/2) +

∑
L∈T ,l′∈S KLl′

sin(l′π/2) sin[π(l−L)/2]
(L(L+1)−l(l+1))

−sin(lπ/2) +
∑

L∈T ,l′∈S KLl′
cos(l′π/2) sin[π(l−L)/2]

(L(L+1)−l(l+1))

(30)
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or

tan(δl − lπ/2) =
−sin(lπ/2) +

∑
L∈T ,l′∈S KLl′

cos(l′π/2) sin[π(l−L)/2]
L(L+1)−l(l+1)

cos(lπ/2) +
∑

L∈T ,l′∈S KLl′
sin(l′π/2) sin[π(l−L)/2]

L(L+1)−l(l+1)

(31)

where only the set L ∈ T appears as unknown and the set {δl}, l ∈ S, represents the input
data. Finding the generalized angular momentum quantum numbers L ∈ T from the above
equations, the inversion potential (9) can be obtained by making use of equations (12) and
(15).

Sets of equations (28) and (29), or (30), or (31) represent three possibilities for the
solution of the CT method with input phase shifts. In obtaining the numerical results presented
in the next section we have found that the application of the Newton–Raphson root-finding
procedures [10] is sufficient to solve equation (31). However, there may be cases encountered
especially in the case of measured data with some errors when the use of other solution
methods, such as the secant method of Broyden [13] or the simulating annealing method
[14] or their combination, is necessary. In such cases also employment of other forms of the
nonlinear equations (28), (29) or (30) may prove useful in finding the numbers L ∈ T of
shifted angular momenta.

A practical method for finding the numbers L can be obtained by analysing equation (31)
for the case N = 1, that is when only one angular momentum quantum number plays a role.
Such a situation occurs, for example, at low energy which is dominated by the s-wave (l = 0)

scattering or for resonance scattering, when a particular angular momentum l dominates the
cross section. For one input phase shift δl , equation (31) can be written in the form

tan(δl − lπ/2) = −sin(lπ/2) cos[(l − L)π/2] + cos(lπ/2) sin[(l − L)π/2]

+cos(lπ/2) cos[(l − L)π/2] + sin(lπ/2) sin[(l − L)π/2]
(32)

from which the shifted angular momentum readily follows to be

L = l − 2

π
δl (33)

where the periodicity of L arising from the trigonometric functions has been absorbed by the
nπ ambiguity of the scattering phase shifts δl . (It is easy to see that the latter ambiguity does
not affect the results (30)–(31) because of the appearance of the normalization constant Bl in
equations (18)–(20), and (24)–(29).)

From the above equation (33) we also see that for high angular momentum quantum
numbers l when the potential does not play a decisive role (and the phase shifts δl tend to
zero), the shifted angular momentum quantum numbers L approach the physical ones l. In
the following we shall therefore adopt equation (33) as a physically reasonable normalization
condition of the numbers L at high l.

One may thus proceed successively to solve equation (31) first with one term (N = 1)

giving input data l1, δl1 and a starting guess L1 ∼ l1 − 2δl1/π , then let a nonlinear solver find
the correct value of L1 (which should be l1 − 2δl1/π). We then proceed to N = 2 by giving
additional input data l2, δl2 and initial values L1 ( just determined) and L2 ∼ l2 − 2δl2/π , and
again let the numerical procedure determine both Li, i = 1, 2, simultaneously. At N = 3 we
give the additional input data l3, δl3 and starting values L1, L2 (as determined at level N = 2),
and L3 ∼ l3 − 2δl3/π , then let the solver perform the calculation for the correct solutions
Li, i = 1, 2, 3. By repeating this procedure one may calculate the wanted set L ∈ T and then
the inversion potential. Let us note that the above procedure can also be used backwards, by
starting at the maximal angular momentum lN = lmax as the first step where the initial LN is
close to lN , then going downwards until L1 has been determined with the input data l1 = 0
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and δ0. This latter procedure is useful when the coupling generated by the unknown potential
among the Li is so strong that it is hard to find the appropriate starting values for the lower Li .

4. Results

All the above formulae have been derived for the case of wave number k = 1 by using
atomic units (h̄2/2µ = 0.5). For the case k �= 1 we obtain the potentials U(r) (possessing a
dimension of energy) as follows (ρ = kr)

U(r) = U
(ρ

k

)
= EV (ρ) (34)

where E = h̄2k2/(2µ) and V (ρ) is taken from equation (9).
We also calculate the first moment Q1 of the CT inversion potential by using the formula

[8]

Q1 =
∫ ∞

0
dr rU(r) =

∑
L∈T

bL (35)

where the numbers bL,L ∈ T are solutions of the system of equations∑
L∈T

GlLbL = −1 l ∈ S (36)

with the matrix GlL = 1/(L − l). These solutions can also be given explicitly as [8]

bL =
∏

l∈S(L − l)∏
L′ �=L∈T (L − L′)

. (37)

We may also calculate the value of the potential at the origin by applying a power
expansion to the Bessel function appearing in equations (12) and (15) with respect to r up to
the fourth order, and then by inserting the result into equation (9) to obtain

U(0) = E

(
Q − 2(1 − Q)

∑
L∈T ,l∈S

(G−1)Ll/(1 − 2l)

)
(38)

where

Q =
∑
L∈T

bL/(L + 3/2). (39)

In the following subsections where the results will be presented for synthetic data related
to Woods–Saxon and box potentials we also list the expansion coefficients γl which are
determined by the system of equations (13) and given explicitly by equation (14). The
coefficients γl provide information about the convergence property of the CT ansatz (1).

4.1. WS potential

Figure 1 summarizes the results obtained for the case of N = 13 input phase shifts
(l = 0, 1, . . . , 12) derived from the Woods–Saxon potential

UWS(r) = −1

1 + exp((r − 1)/0.25)
(40)

at k = 6 au. In figure 1 the CT inversion potential is shown by the solid curve and, for
comparison, the dashed curve represents the NS inversion potential with the same set of input
phase shifts. The superiority of the CT results is obvious, especially at the origin and large
distances. We note that such a good quality of results (see also figure 2), except at the origin,
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Figure 1. CT inversion potential (solid curve) obtained from (34) as compared to NS results
(dashed curve) for the WS potential given by equation (40) at k = 6 (au) and lmax = 12 (N = 13)

as a function of the radial distance r.
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Figure 2. Differences between the CT and WS potentials (solid line) and between the NS and WS
potentials (dashed curve). Note the different scale of magnitude on the ordinates on both sides.

can also be obtained by using the NS method if we employ an input set of phase shifts as large
as N ∼ 50 (and take the matching radius not larger than about 8 au when calculating phase
shifts back from the NS potential).

In order to exhibit the quality of the CT method more sensibly, we show in figure 2 the
differences between the CT and WS potentials as the solid curve, together with the differences
between the NS and WS potentials by the dashed curve. Figure 2 clearly shows the similarity
of the two inversion methods but on a different scale, differing by two orders of magnitude in
favour of the CT method.

Table 1 contains the shifted angular momentum quantum numbers Li, i = 1, . . . , 13,
and expansion coefficients γi, i = 1, . . . , 13, obtained, respectively, by solving the system of
nonlinear equations (31) and by using equation (14). Also listed are the input sets of physical
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Table 1. Results for the inversion with WS data. Index number i, shifted angular momentum Li

obtained by solving equation (31), input physical angular momentum li , expansion coefficients
γi calculated by equation (14), input phase shifts δWS

li
, output phase shifts δCT

li
generated by CT

inversion potential, output phase shifts δNS
li

generated by NS inversion potential shown in figure 1.

i Li li γi δWS
li

δCT
li

δNS
li

1 −0.1297 0 0.0779 0.1654 0.1650 0.1365
2 0.8904 1 0.2586 0.1602 0.1602 0.1304
3 1.9041 2 0.4285 0.1490 0.1490 0.1202
4 2.9182 3 0.5557 0.1322 0.1321 0.1014
5 3.9343 4 0.6077 0.1094 0.1094 0.0800
6 4.9513 5 0.5691 0.0830 0.0829 0.0502
7 5.9670 6 0.4627 0.0575 0.0575 0.0269
8 6.9794 7 0.3341 0.0369 0.0368 0.0011
9 7.9880 8 0.2190 0.0223 0.0222 −0.0111

10 8.9934 9 0.1325 0.0129 0.0129 −0.0268
11 9.9967 10 0.0738 0.0073 0.0072 −0.0341
12 10.9985 11 0.0364 0.0040 0.0040 −0.0409
13 11.9995 12 0.0141 0.0022 0.0021 −0.0704

angular momentum quantum numbers {li} and phase shifts
{
δWS
li

}
and the sets of phase

shifts
({

δCT
li

}
and

{
δNS
li

})
of the inverse potentials resulting from the CT and NS methods,

respectively.
Studying table 1 we clearly see the superiority of the CT method. The reproduced

phase shifts δCT
li

are very close to the input ones δWS
li

over the whole domain of input
angular momentum quantum numbers li , i = 1, . . . , 13. Also we observe that the expansion
coefficients γi are gradually decreasing for large angular momenta while they are nearly
constant in the middle range of the expansion domain considered. The shifted angular
momenta Li are gradually approaching their counterparts of physical angular momenta li
at large quantum numbers while they depart from them at low values of li . We may conclude
that a large part of the information about the inversion potential is encoded in the differences
Li − li , i = 1, . . . , 13.

The result for the first moment is Q1 = −0.609 au to be compared to the exact value of
−0.601 au. The value of the potential at the origin is UCT(0) = −0.965 au to be compared
to UWS(0) = −0.982 au. The respective quantities for the NS method are Q1 = 0 au and
UNS(0) = −∞.

4.2. Box potential

In order to explore the capability of the CT method we have investigated the square-well (box)
potential case too. It is well known that this potential represents a sensible test for numerics.
Figure 3 shows the results of the CT method (dashed curve) with k = 6 au obtained for the
box potential

UBX(r) =
{−1 0 < r < 1

0 r > 1.
(41)

For the input phase shifts we used N = 8 and lmax = 7. For comparison we have included the
inversion potential given by the NS method (dot-dashed curve) with the same size of input set
of phase shifts, and the original potential (solid line).
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Figure 3. CT inversion potential (dashed curve) obtained from (34) as compared to NS results
(dot-dashed curve) for the box potential given by equation (41) (solid line) at k = 6 (au) and
lmax = 7 (N = 8) as a function of the radial distance r.

Table 2. Results for the inversion with box potential data. Index number i, shifted angular
momentum Li obtained by solving equation (31), input physical angular momentum li , expansion
coefficients γi calculated by equation (14), input phase shifts δBX

li
, output phase shifts δCT

li
and δNS

li
generated from CT and NS inversion potentials, respectively (see figure 3).

i Li li γi δBX
li

δCT
li

δNS
li

1 −0.1309 0 0.0807 0.1676 0.1681 0.1263
2 0.8904 1 0.2667 0.1611 0.1601 0.1216
3 1.9089 2 0.4155 0.1405 0.1413 0.0985
4 2.9047 3 0.6744 0.1547 0.1537 0.1116
5 3.9373 4 0.6243 0.1085 0.1092 0.0634
6 4.9780 5 0.2723 0.0427 0.0420 −0.0093
7 5.9963 6 0.0530 0.0107 0.0111 −0.0411
8 7.0010 7 −0.0167 0.0019 0.0016 −0.0892

In general, one observes for both inversion methods a less satisfactory reproduction
compared to the WS potential case. However, the CT method also provides in this case a good
result although the performance is poorer than in the WS case, as can also be recognized from
table 2. This poorer reproduction can be attributed to the smaller set of input data than that
used in the WS case.

In order to test the stability of the numerical method used with respect to possible errors
in data we have also performed calculations with slightly changed input phase shifts. The
procedure proved to be stable in that a few per cent modification in data induced a negligible
difference of values of the inversion potential within the whole spatial domain of interest.

Table 2 contains the shifted angular momentum quantum numbers Li, i = 1, . . . , 8, and
the expansion coefficients γi, i = 1, . . . , 8, obtained, respectively, by solving the system of
nonlinear equations (31) and using equation (14). Also listed are the input sets of physical
angular momentum quantum numbers {li} and phase shifts

{
δBX
li

}
and the sets of phase shifts{

δCT
li

}
and

{
δNS
li

}
given by the inverse potentials of the CT and NS methods.
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The result for the first moment is Q1 = −0.51 au to be compared to the exact value of
−0.50 au. The value of the potential at the origin is UCT(0) = −1.09 au to be compared
to UBX(0) = −1.00 au. The respective quantities for the NS method are Q1 = 0 au and
UNS(0) = −∞.

5. Summary and conclusion

We have implemented the Cox–Thompson (CT) inverse scattering method to derive potentials
from finite sets of phase shifts. By starting with a Povzner–Levitan representation of the
regular wavefunction of the CT theory we have shown how a set of nonlinear equations can be
constructed for the calculation of the unknown normalization constants and the nonphysical
(shifted) angular momenta {Li}, i = 1, . . . , N , which are quantities of central importance in
the CT theory. By solving the nonlinear equations (31) with finite sets of phase shifts as input
data, we have obtained the sets of the shifted angular momenta {Li}, i = 1, . . . , N, from which
we have further calculated various quantities of interest such as the (dimensionless) inversion
potential V (r) itself, defined by equation (9), the first moment

∫ ∞
0 rU(r) dr , the potential

value at the origin U(0) and the expansion coefficients {γi}, i = 1, . . . , N . To calculate these
quantities we have solved simple linear equations (e.g. (15)) or evaluated analytical formulae
(such as, e.g., (14), (12), (35), (38)), all containing the pre-determined nonphysical (shifted)
angular momenta {Li}, i = 1, . . . , N . It is observed that a large amount of the information on
the potentials is encoded in the differences {Li − li}, i = 1, . . . , N , between the physical and
nonphysical (shifted) angular momenta.

As a first application of the CT method we have chosen finite sets of phase shifts belonging
to known potentials of short range type with both sharp and diffuse edges. For both types
of potentials we have found that the CT method requires a small set of phase shifts with
appreciable magnitude. At a given computer accuracy, the inclusion of smaller phase shifts
does not improve the results neither at the origin nor at asymptotical distances. This means
that the behavior of the potential at smaller and larger distances is properly accounted for
by the CT ansatz (1). This is to be contrasted to the situation produced by the NS method
where it can generally be observed that the more phase shifts (even zero ones) are included
in the procedure, the better the results. This improvement in the NS method is observed in
shifting the singularity of the NS potential closer to the origin, and pushing the nonphysical
oscillations towards asymptotical distances.

The quality of the CT inversion potential and the amount of information required by it to
generate the potential is similar to those exhibited by the mNS method [4] which assumes a
known (prescribed) asymptotics beyond a finite distance r0. Although the theoretical analysis
of a possible connection between the mNS and CT methods remains to be done, the CT
method has the advantage that it does not require a stability analysis with respect to changing
r0 (because it has no such free parameter). The price we have to pay in the CT method is the
solving of nonlinear equations. In our exploratory calculations we have found that algorithms
working on the basis of Newton–Raphson root-finding techniques [10] are sufficient, but there
have also been cases encountered when other procedures such as the secant method of Broyden
[13] or the simulating annealing method [14] or their combinations have proved successful in
finding the numbers {Li}, i = 1, . . . , N, of shifted angular momenta.

Finally, we should note that the CT method deserves to be analysed further and extended
into various directions such as, e.g., to include the treatment of Coulomb potentials or complex
valued interactions. It would also be interesting to explore the gain which might be expected
when the equations are solved with the finite distance r0 beyond which a prescribed asymptotics
of the potential is accurate. Such investigations are in progress.
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